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Abstract— The ability to detect online changes in stationarity
or time variance in a data stream is a hot research topic
with striking implications. In this paper, we propose a novel
probability density function-free change detection test, which is
based on the least squares density-difference estimation method
and operates online on multidimensional inputs. The test does not
require any assumption about the underlying data distribution,
and is able to operate immediately after having been config-
ured by adopting a reservoir sampling mechanism. Thresholds
requested to detect a change are automatically derived once a
false positive rate is set by the application designer. Compre-
hensive experiments validate the effectiveness in detection of the
proposed method both in terms of detection promptness and
accuracy.

Index Terms— Concept drift, least squares density-difference
(LSDD)-based method, probability density function (pdf)-free,
three-level threshold mechanism.

I. INTRODUCTION

THE traditional learning framework assumes the stationary
hypothesis for the process generating the data, implying

that its statistical characterization does not change with time.
However, such a hypothesis constitutes a first-order approxi-
mation of the reality and is hardly met in those applications
where time variant phenomena affect the environment, the
sensors acquiring the data streams or both.

The literature addressing learning in nonstationary or evolv-
ing environments classifies existing methods as passive or
active depending on the learning mechanism adopted to deal
with the process evolution [1]. We say that the approach is
passive when the application undergoes a continuous learning
without knowing whether changes in stationarity occurred or
not [2], [3]. Differently, within an active approach, a triggering
mechanism, e.g., a change detection test (CDT) [4], [5],
is considered and the application evolves and adapts to track
the evolution of the environment only after a change is
detected. In this paper, we focus on changes in stationarity—
or concept drift—and assume that data streams to be inspected
are possibly infinite sequences of independent and identically
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distributed (i.i.d.) samples drawn from a random variable
following an unknown continuous probability density function
(pdf) p(x). Suitable transformations should be applied to data
streams when facing with signals and nonrandom variables in
order to meet the i.i.d. hypothesis, e.g., as done in [6].

The rich literature presents many solutions for detecting
concept drift within an unsupervised framework (i.e., only
changes affecting the pdf of inputs are considered), mostly
by observing statistical features extracted from the pdf,
e.g., mean, variance, or the time evolution of other statistics.
For instance, Hawkins and Zamba [7] introduced a change-
point formulation by inspecting the mean and/or variance
in normally distributed data streams with a single chart.
A sequential estimation technique was proposed in [8], which
simultaneously monitors data streams and updates the method
parameters. Ross et al. [9], [10] extended those works to allow
for fully nonparametric detections in non-Gaussian sequences.
Nonparametric hypothesis tests, such as the Mann–Whitney
test [11], the Mood test [12] and the Lepage one [13],
have been advanced in [9] to create a streaming change-
point model (CPM) able to deal with arbitrary continuously
distributed univariate data streams; two control charts based on
Kolmogorov–Simirnov [14] and Cramer–von Mises tests [15]
have been proposed in [10] to detect arbitrary changes without
assuming a known distribution. Therefore, authors adopt the
average run length (ARL0) index defined as the average num-
ber of observations between consecutive false detections; the
index provides the first statistical moment for the occurrence of
false positives (FPs). Requested thresholds are obtained with
a Monte Carlo analysis once a predefined ARL0 value has
been set. Raza et al. [16], [17] proposed an exponentially
weighted moving average (EWMA)-based method to mon-
itor autocorrelated observations, which is suitable for real-
time adaptive classification problems. Alippi et al. [18]–[20]
proposed and advanced the just-in-time framework where
applications are automatically adapted following a detected
change. The CI-CUSUM test [18] and ICI-based CDT [21]
can detect trends and drifts without any prior by relying on
extracted features, with requested thresholds estimated directly
from the training set. Kuncheva and Faithfull [22] proposed
a feature extraction method by applying principal component
analysis for change detection in multidimensional data, argu-
ing that the least important components are more sensitive to
changes. Most of these methods operate on scalar streams;
extension to the multidimensional case is mostly implemented
by inspecting each dimension independently followed by a
final consensus method aggregating provided results.

Some authors follow a different philosophy for concept drift
detection by comparing two pdfs; one assumed to represent
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the stationary case, and the other associated with data pos-
sibly affected by changes. In this direction, Schilling [23]
proposed a k-nearest neighbor (KNN)-based test measuring the
proportion of observations and their KNNs belonging to the
same sample. The statistic asymptotically satisfies a normal
distribution under some mild assumptions, and is compared
with a predefined threshold to detect a change.

Many authors have proposed solutions to detect changes
in classification problems (supervised methods). Therefore,
the distribution of outputs or the conditional probability is
inspected for changes, sometimes in addition to inspection of
changes in the distribution of inputs [24]. Since we assume
the pdf to be continuous, we are not addressing changes
here, affecting the output of a classification system; in such
a case, suitable methods must be considered to complete
the investigation for concept drift. For instance, methods
proposed in [25]–[27] aim at detecting changes at the classifi-
cation error level, which satisfies a Bernoulli distribution. The
EWMA-based method proposed in [25] can detect changes
under a controlled FP rate; the SeqDrift1 [26] applies the
Bernstein inequality to measure the deviation degree of the
two mean values and SeqDrift2 [27] extends such a work
using reservoir sampling to achieve low FP rates and reduce
detection delay.

Only few papers address the detection challenge directly
at the pdf level, here supposed to be continuous. These
methods do not specify the type of detected changes, since
any change affecting the pdfs will be detected provided
change magnitudes are large enough. However, the major
difficulty here is associated with the generally limited data
set, situation that prevents any effective estimate of the
pdf. Dasu et al. [28] proposed an information-theoretic
approach, which utilizes kdq-trees to form the empirical
distributions starting from two independent data sets rep-
resentative of the stationary and the—possibly changed—
distributions. Comparison between the two estimates is
then implemented with the Kullback-Leibler-divergence.
Sugiyama et al. proposed instead to estimate density ratio
[29], [30] or density difference [31], [32] of the two sub-
sets directly with Gaussian kernel functions. These methods
overcome the drawback of the traditional two-step procedures
requiring at first to estimate the two densities, operation
that amplifies errors. The density-ratio and density-difference
approaches measure the dissimilarity of the two pdfs: the
higher the obtained value, the larger the difference. Density
difference approaches are desirable, since derived values are
finite provided that each density is bounded, whereas den-
sity ratios might diverge to infinity even under mild condi-
tions [31], e.g., when distributions are Gaussians. However,
neither in above research a reasonable threshold is given
to detect a change, nor the FP rate is controllable by the
application designer. Another major aspect is that derived
estimates are very sensitive to both subset size and distribution,
which makes it hard to derive a suitable threshold.

The above-mentioned approaches show to be very attrac-
tive and worth further investigation. In this paper, we
propose a pdf-free CDT based on the least squares
density-difference (LSDD) estimation method. The test shows

to be particularly effective in multidimensional streaming
applications. Considering the high variance of LSDD values
for a given subset (window) size, a bootstrapping proce-
dure has been presented to characterize such a variability;
the exercise becomes particularly relevant in those scenarios
encompassing small data sets. We then derive thresholds for
change detection from the bootstrapped-based distribution in
stationary conditions, which satisfy user-defined tolerated FP
rates. In order to be sensitive to small changes, i.e., reduce
false negatives (FNs), a three-level threshold mechanism is
proposed with three detection options: provide a warning,
confirm a change, or clear the warning. To the best of our
knowledge, what here proposed is the first density-difference-
based CDT:

1) introducing a control of FPs;
2) presenting a reservoir sampling mechanism to update

the reference window permitting the method to become
immediately operational without requiring a huge train-
ing set;

3) proposing a three-level threshold mechanism to
reduce FNs through an increased detection sensitivity
with thresholds associated with designer-tunable
FP rates.

The structure of this paper is as follows. Section II presents
the LSDD approach. Section III introduces the threshold
mechanism with thresholds chosen to satisfy a predefined FP
rate. The proposed LSDD-based CDT is given in Section
IV, as with the hierarchical threshold mechanism designed
to improve detection sensitivity. In Section V, comprehensive
experiments validate the effectiveness of our proposed method.
Section VI concludes the paper.

II. LSDD METHOD

The density-difference estimation method [32] aims at mea-
suring the LSDD

D2(p, q) =
∫

(p(x) − q(x))2dx (1)

where x ∈ Rd is a real vector, and p(x) and q(x)
are two continuous pdfs. Within a change detection frame-
work pdfs, p(x) and q(x) refer to the prechange and
a possible postchange condition, respectively. Since both
p(x) and q(x) are unknown, we estimate their difference
p(x) − q(x) with a linear-in-parameters Gaussian kernel
function

g(x,�) = �T K =
2n∑

i=1

θi exp

(
−||x − ci ||22

2σ 2

)
(2)

where � = (θ1, . . . , θi , . . . , θ2n) is the parameters vector,
K is the Gaussian kernel vector, and 2n is the number of
considered kernel functions. The kernel centers are chosen as
(c1, . . . , c2n) = (x p,1, . . . , x p,n, xq,1, . . . , xq,n) and are repre-
sentative of pdfs p(x) and q(x), in the sense that n samples
are drawn from p(x) and n from q(x). Scaling parameter σ
is chosen during the training phase as the median distance
between points in the aggregate sample as recommended
in [33] σ = median(||xi − x j ||2, 0 < i < j ≤ Nt ), where
Nt is the cardinality of the training set.
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The optimal parameter �∗ is obtained by minimizing the
squared loss

J (�) =
∫

(g(x,�) − (p(x) − q(x)))2dx . (3)

By adding an L2-regularizer to (3) to request a smooth
solution, the optimization problem becomes

�̂ = arg min
�

(J (�) + λ�T �)

= arg min
�

(�T H� − 2hT � + λ�T �) (4)

where λ ≥ 0 is the regularization parameter, H is a 2n · 2n
matrix, and h is a 2n · 1 vector. Defined as Hi, j the generic
component of matrix H and hi the i th component of the vector
h, we have that

Hi, j =
∫

exp

(
−||x − ci ||22

2σ 2

)
exp

(
−||x − c j ||22

2σ 2

)
dx

= (πσ 2)
d/2

exp

(
−||ci − c j ||22

4σ 2

)
(5)

hi =
∫

exp

(
−||x − ci ||22

2σ 2

)
p(x)dx

−
∫

exp

(
−||x − ci ||22

2σ 2

)
q(x)dx (6)

i, j = 1, . . . , 2n. Since p(x) and q(x) are unknown pdfs,
ĥi is estimated with Monte Carlo on two data subsets: those
associated with p(x) (the pdf of the reference window) and
those associated with the testing window to be checked for
the presence of a change and associated with q(x)

ĥi = 1

n

n∑
j=1

exp

(
−||x p, j − ci ||22

2σ 2

)

− 1

n

n∑
j=1

exp

(
−||xq, j − ci ||22

2σ 2

)
. (7)

Finally, �̂ can be expressed as

�̂ = (H + λI )−1ĥ. (8)

By replacing p(x) − q(x) with g(x, �̂) in (1), the
D2-distance can be estimated by two equivalent expressions

D̂2
1(p, q) =

∫
g(x, �̂)2dx =

∫
(�̂T K )2dx

= �̂T
(∫

K K T dx

)
�̂

= �̂T H �̂ (9)

D̂2
2(p, q) =

∫
g(x, �̂)p(x)dx −

∫
g(x, �̂)q(x)dx

= �̂T h ≈ �̂T ĥ. (10)

Sugiyama et al. [31] combined them together to reduce the
bias contribution brought by λ as

D̂2(p, q) = 2�̂T ĥ − �̂T H �̂ (11)

and 2�̂T ĥ − �̂T H �̂ ≥ �̂T ĥ ≥ �̂T H �̂ ≥ 0.

When λ = 0, the optimization problem reduces to the
original one and no overfitting control is introduced; when
λ is large, the approximating model is smooth, and the D̂2

values are generally small. The optimal parameter λ can be
estimated with cross validation to minimize the squared loss,
as done in [31] and [32] where the pdfs p(x) and q(x) are
different. Whenever we compare two subsets drawn from a
stationary distribution, which is the case both in the training
phase and when the testing window associated with q(x) refers
to stationary data [q(x) is identical to p(x)], cross validation
does not work well. In fact, the density difference is so small
that a large λ associated with a smooth fitting is always chosen,
and the estimated LSDD values in a nonstationary data set
diverge a lot from their real values.

Here, we introduce the relative difference (RD)

RD = �̂T ĥ − �̂T H �̂

�̂T ĥ

= ĥT (H + λI )−1ĥ − ĥT (H + λI )−1 H (H + λI )−1ĥ

ĥT (H + λI )−1ĥ

= λ
ĥT (H + λI )−2ĥ

ĥT (H + λI )−1ĥ
. (12)

which is controlled by the coaction of samples coming
from p(x) and q(x), the kernel width σ and the regular-
ization parameter λ. Equation (12) can be transformed to

(1 − RD)�̂T ĥ = �̂T H �̂, which directly shows the relation-
ship (or difference) between the two expressions. In this case,
we propose to select a proper λ by controlling RD, so that
the difference is neither too large nor too small. The challenge
of choosing an unbounded λ > 0 turns into choosing a range-
constrained 0 < RD < 1. In particular, the designer should
explore a set of values λ during the training phase, and choose
the largest value whose corresponding RD is smaller than a
predefined constant RD0.

III. THRESHOLD SETTING

In the stationary case, the unknown distribution of D̂2 is
associated with the comparison of two independent subsets
containing i.i.d. samples drawn from distribution p(x) and
q(x) = p(x). Such distribution is expected to change once
distribution q(x) differs from distribution p(x) due to concept
drift. D̂2 values are, as we should expect, sensitive to both the
cardinality of n and p(x).

In this paper, we are addressing the case where data
come continuously, in data streams. As such, the two subsets
containing information about distributions p(x) and q(x) are
windows Z p and Zq opened over the data streams. The
problem we should ask is “when and at which level of
confidence” data coming from Zq are no more coherent with
those coming from Z p, i.e., concept drift occurred in Zq .

Given the limited data set of size Nt provided for training
and the fact that n data are requested to generate an LSDD
value, we present a bootstrap mechanism to generate enough
LSDD values from Nt to be able to infer their distribution.
It must be outlined that we are not providing the distribution of
the LSDD values generated with infinite training samples and
independent windows but, instead, the distribution of LSDD
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values bounded by the fact we consider an n data window and
the bootstrap mechanism. Clearly, if Nt is large enough, we
can consider independent windows in order to estimate LSDD
values. However, the methodology does not change. Moreover,
it should be pointed out that having a small Nt would allow us
to become immediately operational after the method has been
configured and that a small n permits the method to keep
under control its computational complexity. The effectiveness
of using bootstrap on similar problems has been validated by
previous studies [34]–[36].

De Brabanter et al. [34] derived thresholds for change detec-
tion so as to satisfy some quantile levels of the bootstrapped-
based distribution. Sugiyama et al. [36] also approximated
the p-value of measured Pearson divergences as thresholds
for the density-ratio estimation. Burghouts et al. [37] proved
that the L p-norm of two nonidentical distributed and corre-
lated bounded feature vectors satisfies a Weibull distribution.
Khan et al. [38] modeled the L2-norm dissimilarity to identify
the singularities in dikes with a mixture of gamma and uniform
distributions where the uniform distribution accounts for some
possible anomalies. Unfortunately, no direct results indicate
which distribution should be preferred to fit the L2-norm
dissimilarity of two densities. In this paper, we derive a
threshold as in [34] and [36] by estimating the 1−μ quantile.
As recommended in [7], the selected threshold ensures the
controllability of FP rate μ

Pr(D̂2 > Tμ) = μ (13)

and the corresponding value of ARL0 is 1/μ. Thus, given
an acceptable FP rate or the ARL0 value, the threshold T is
derived by (13).

IV. LSDD-CDT

An LSDD-CDT can now be designed by exploiting the
information content provided by two windows. As mentioned
earlier, the first window Z p includes samples extracted accord-
ing to reference distribution p(x). The second one Zq is
assumed to contain data generated according to distribution
q(x), different from p(x) only when data contain a change
in stationarity. This latter window slides in time so that new
samples are hosted as they arrive and oldest ones are discarded.

We present a reservoir sampling procedure [39] to manage
the data in the reference window Z p with both old and new
samples, which makes the new set Z p more sensitive to
changes as validated in [27]. It permits Z p to be updated
by integrating some instances not present in the training set,
which allows the detection mechanism to become immediately
operational after its configuration without requiring a huge
training data set. Its effect is positive provided that data do
not undergo any change in stationarity until the insertion
probability goes to zero. Then, D̂2 values are produced on
the updated Z p and Zq sets, and compared with the threshold
T associated with predefined FP rate μ according to (13).

A. Three-Level Threshold Mechanism

We propose a three-level threshold mechanism to be more
sensitive to changes (i.e., keep low FNs), yet maintaining the
same FP rate.

Algorithm 1 LSDD-CDT
Input: Training set with Nt samples, window size n < Nt /2,

FP rates μs > μw > μc , number of bootstraps m;
Output: Either change detected with its location or no change.
1: Compute the LSDD values (11) from the training set with

bootstrap; determine parameters σ and λ;
2: Derive three thresholds TS, TW , TC from the estimated

LSDD values D̂2 according to the predefined FP rates
μs, μw,μc on (13);

3: Prepare the reference Z p and testing Zq windows; i = 1;
4: while (1) do
5: Compute estimate D̂ by comparing Z p and Zq accord-

ing to (11);
6: if D̂ > TW or in warning state then
7: Set/keep the warning alarm; Stop updating Z p;
8: if D̂ > TC then
9: Change detected at warning point PW ;

10: Store the change confirmation point PC ;
11: Break / reaction;
12: end if
13: if D̂ < TS or in warning state for n samples then
14: Clear the warning alarm;
15: Update Z p with reservoir sampling.
16: end if
17: else
18: Update Z p with the reservoir sampling;
19: Update Zq with the sliding strategy.
20: i = i + 1;
21: end if
22: end while

The proposed approach encompasses a safe threshold TS ,
a warning threshold TW , and a change threshold TC . The
thresholds in order TS , TW , and TC are associated with
decreasing FP rates according to (13) to clear a warning,
provide a warning, and confirm the detected change, respec-
tively. In this case, a potential change is soon detected and
extra information is then accounted for assessing its nature.
When a D̂2 value exceeds TW associated with a high FP rate
μw , a warning flag is raised in correspondence with the latest
sample PW . Once entered in a potential change detected state,
the testing window Zq slides to collect extra new samples to
further assess the nature of the change (either an FP or a true
change). If the new computed D̂2 value goes above threshold
TC associated with a low FP rate μc , the change is confirmed at
point PC > PW ; conversely, if the value is below TS associated
with an FP rate μs , or the warning state continues even with
n new collected samples, the warning alarm is cleared and
considered to be a false alarm. When changes are confirmed,
we stop testing for changes in stationarity and react since
the method perceived a change with probability 1 − μc; if
the warning is cleared, the two windows continue to slide
or update normally. The detailed procedure is described in
Algorithm 1, steps 4–22.

The mechanism also permits to detect the change location,
i.e., at which sample the change occurred (or was perceived).
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More in detail, when a change is detected, the warning point
PW corresponding to threshold TW is considered to be the
estimate of the change location P̂ = PW . In this case, if
reaction to the change mechanisms is needed, we can exploit
samples between PW and PC that, being associated with the
new stationary state can be used to update the application.

B. LSDD-CDT Algorithm

The detailed algorithm for change detection is given in
Algorithm 1. Since the aim of this paper is to focus on
the change detection problem, aspects related to reactions to
the change are not considered (step 11). For the interested
reader, an example of the reaction procedure is that associated
with a detect & react framework, as in just-in-time classifiers
[18], [19], where the application reacts to maximize perfor-
mance once the change is detected.

In applications requesting real-time change detection, mem-
ory requirements and computational complexity are aspects
to be investigated. It emerges that the memory requested
during the operational phase is small, since only max(2n, Nt )
samples need to be stored, while the computational complexity
of executing a test is O(n2).

V. EXPERIMENTS

To validate the effectiveness of the proposed LSDD-CDT,
we provide a comprehensive comparison on different
applications.

We also introduce two extra tests belonging to this fam-
ily of CDT and addressing different operational strategies.
The first test is an LSDD detection test with two sliding
widows (LSDD-Sli); the CDT does not use the reservoir
sampling strategy. The second test is based on an ensemble
of several reference windows Z p (LSDD-Ens) during the
testing phase, whereas the training step is the same as that in
LSDD-CDT. The reference windows adapt with reservoir
sampling independently, and are compared with the testing
window to detect possible changes. A change is confirmed
with the majority voting mechanism. Three well-known meth-
ods are also considered for comparison, i.e., the KNN-based
test [23], [40], the H-ICI CDT [41], and CPM tests [9], [10].

The KNN-based test aims at monitoring statistics Tk,n ,
which indicates how close the two distributions are. For a fair
comparison, we use the same training and detection strategy to
calculate thresholds and detect changes; k is set to 3 to obtain
an FN rate aligned with that of the proposed method.

The H-ICI CDT is a two-level hierarchical CDT whose first
level uses the ICI CDT [21], and the second one uses the
Hotellings T-square statistic [42]. CPM-LP and CPM-CvM
are two general purpose change-point methods suggested
in [9] and [10].

Twelve applications are proposed containing both simulated
(D1-6 and D12) and real data (D7-11). Simulated data sets
are desirable, since the performance of the method can be
assessed in various conditions and also the change points can
be controlled. In particular, applications D3-11 are well-known
benchmarks used to assess detection performance; different
concept drifts, such as abrupt, drift, and precision degradation

changes, are injected into applications D7-9 and D11; multiple
changes are finally considered in D12. More in detail, the
following holds.

1) Application D1 generates data drawn from a normal
distribution N(0, 0.5) that shifts to N(0.2 0.5).

2) Applications D2 refers to a 3-D application, and
data satisfy a multivariate normal distribution
N([0, 0, 0], [0.5, 0, 0; 0, 0.5, 0; 0, 0, 0.5]) that shifts to
N([0, 0, 0], [0.5, 0.4, 0.4; 0.4, 0.5, 0.4; 0.4, 0.4, 0.5]).

3) Application D3 is a two-class rotating mixture of
Gaussians [43] that the class centers shift from μ1 =
[1/

√
2, 1/

√
2], μ2 = [−1/

√
2,−1/

√
2] to μ1 = [1/

√
2,

−1/
√

2], μ2 = [−1/
√

2, 1/
√

2]. The covariance is fixed
as �1 = �2 = [0.5, 0; 0, 0.5].

4) Application D4 refers to a 2-D circle problem [44], so
that data satisfy equation (x1 − a)2 + (x2 − b)2 ≤ r2.
Concept drift is associated with changes in the radius r
from 0.2 to 0.3. a = b = 0.5 and x1, x2 are random
variables uniformly distributed from interval [0, 1].

5) Application D5 refers to the SineV problem [44], where
data satisfy x2 ≤ a sin(bx1 + c) + d , and changes
affect parameter d with values shifting from −5 to 4.
We selected a = b = 1, c = 0, and x1 and x2 are random
variables uniformly distributed from intervals [0, 10] and
[−10, 10], respectively.

6) Application D6 refers to a moving hyperplane [44], so
that xd+1 ≤ −a0+

∑d
i=1 ai xi ; concept drift is induced by

operating on a0 with values moving from −1 to −3.2.
a1 = a2 = 0.1, and x1 and x2 are random variables
uniformly distributed from interval [0, 1] and x3 from
interval [0, 5].

7) Applications D7-9 [45] refer to a hairdryer application
present in the MATLAB toolkit. Since an ARMAX
model well describes the monodimensional input-output
process, changes are detected by inspecting the residuals
e(t) = ẑ2 − z2 between the output ẑ2 as provided by
the ARMAX model and the real measurement z2. Three
types of concept drifts are considered according to the
additive model, ẑ2(t) = z2(t) + δ(t), δ(t) being the
perturbation added at sample 501 and defined as follows.

a) Application D7: δ(t) = 0.1mean(z2) represents an
abrupt perturbation affecting z2.

b) Application D8: A linear drift perturbation ẑ2(t) =
z2(t) + δ(t) · t , so that when t = 1000, δ(t) · t =
0.1mean(z2).

c) Application D9: A precision degradation case mod-
eled as ẑ2(t) = z2(t) + δ(t) with δ(t) randomly
drawn from distribution N(0, 0.1).

8) Data of application D10 contain 4000 samples collected
from a combined cycle power plant [46], [47]. The four
features consist of hourly average ambient variables, i.e.,
temperature, ambient pressure, relative humidity, and
exhaust vacuum, and are used to predict the net hourly
electrical energy output. We normalize the data set into
interval [1, 1]. Changes are injected at sample 2001 with
the normalized temperature shifting from x1 to −x1.

9) Application D11 refers to data acquired from a monitor-
ing system deployed on the Alps to monitor a potential
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rock collapse [48]. A total of 11 520 samples, acquired
over 80 days with 10 min sampling time, refer to three
temperature sensors. The structure of the experiment is
in line with applications D7-9, with changes affecting
a single sensor only from sample 9000, as shown in
Fig. 3(a)–(c). Since these temperatures are correlated, we
model sensor interdependence with an ARMAX model
receiving two sensor data streams as inputs and the third
one as output. Three ARMAX models are identified,
each of which generating a residual to be inspected for
change detection. Since the residuals introduce aperiod-
icity associated with the day–night evolutions, we detect
changes by inspecting nonoverlapped windows of one-
day samples.

10) Application D12 refers to four scenarios each of which
containing multiple changes (please refer to Fig. 4).
Data in stationarity conditions satisfy a unidimensional
normal distribution N(0, 0.1), and the added changes are
as follows.

a) Case 1: Two different brief-in-duration changes
occur successively. The first one (1#) follows
distribution N(0, 0.25), and the second one (2#)
N(0.25, 0.1). Each concept drift consists of 50 sam-
ples, and changes are separated by 50 stationary
samples.

b) Case 2: One concept drift of 50 samples occurs
and satisfies distribution N(0.25, 0.1).

c) Case 3: Two different changes occur as with Case
1. Here, each drift lasts 100 samples, and is sepa-
rated by 50 stationary samples.

d) Case 4: A gradual drift occurs with both mean
and standard variance. The new distribution
is N(0.1 sin((iπ)/(200)), 0.1 + (0.15i)/(1000)),
i = 1, . . . , 1000.

Other setting parameters are defined based on our expe-
rience as follows. Since we are considering a scenario with
limited training set, the training set Nt is composed of
400 samples, and the number of bootstraps m is 2000. The
FP rates μs , μw , and μc corresponding to TS , TW , and TC ,
respectively, are set to 2%, 1%, and 0.1%, i.e., the corre-
sponding values of ARL0 are 50, 100, and 1000 samples.
It is worth noting that we just make a fair comparison
between our methods and others under the same condition,
e.g., the same FP rates. RD0 is set to 0.25 by experience,
and the optional values of λ are generated by the MATLAB
function logspace (−2, 1, 20) that includes 20 values
between 0.01 and 10. The number of reference windows in
LSDD-Ens is 5. A total of 500 experiments are repeated for
each application to assess results.

Above-mentioned settings are appropriate for LSDD-Sli,
LSDD-Ens, LSDD-CDT, and KNN-based tests, since they
follow the same detection procedure. Differently, the H-ICI
CDT is configured as proposed in [41]. The ARL0 values of
CPMs are set to 1000, i.e., the predefined FP rate is 0.1% in
line with μc .

We consider the FP and FN rates, as well as the detec-
tion delay and computational time (CT) as performance
indexes.

Fig. 1. Influence of window size n on (a) detection delay and (b) FN rate.

TABLE I

TESTING THE REAL FP RATE

1) FP Rate [FP(%)]: It represents the percentage of exper-
iments where a test erroneously detects a change.

2) FN Rate [FN(%)]: It represents the percentage of exper-
iments where the existing change is not detected.

3) Delay (in Samples): It measures the promptness in
detection latency by considering the detection delay.
We record a delay only when the real change is detected;
both the mean and the standard deviation of the delay
values are computed.

4) CT (CT in Seconds): It measures the execution time
needed to perform the tests, including the training phase
(reference platform: ThinkCentre M4300t Intel i5 core
running at 3.1 GHz, 4G RAM). Both the means and the
standard deviations are computed.

Although the estimated change location P̂ of LSDD-CDT
(in Algorithm 1, step 10) is known, we take the change confir-
mation point PC as the change detected location to calculate
detection delay for fair comparison in our experiments.

A. Influence of the Window Size

In order to investigate the impact of the window size,
we consider n ∈ {20, 50, 100, 150, 200} for performance
comparison (for large n, the window size gets too close to
the training size with a degradation in performance). Results
on the simulated applications D1-6, averaged over 500 trials,
are shown in Fig. 1 with a ± standard deviation.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BU et al.: PDF-FREE CDT BASED ON DENSITY DIFFERENCE ESTIMATION 7

TABLE II

ASSESSING CHANGE DETECTION PERFORMANCE ON DIFFERENT APPLICATIONS

As expected, the FN rate decreases as the window size
enlarges while the detection delay is application-dependent and
weakly affected. Fig. 1(a) indicates that most of applications
show a good detection promptness when n is around 100, and
we consider this window size in the sequel.

B. Influence of a Predefined FP Rate

In order to validate how the real FP rates of our method are
consistent with the predefined FP rate μc, we conducted some
experiments on stationary applications D1-6.

Experiments are designed as follows. The predefined FP
rates range in the {5e-2, 1e-2, 5e-3, 2e-3, 1e-3} set. For a
given predefined FP rate μc of each application, 100 tests, as
one trial, are carried out to measure the real FP rate; then,
500 trials are executed to compute the mean and the standard
deviation of the FP rate. Experimental results are shown in
Table I. The real FP rates are close to the predefined ones,
which means that the proposed method is reasonably effective
in controlling the FP rates.

Another experiment shows how the predefined FP rates,
i.e., the corresponding thresholds, affect the detection latency

Fig. 2. Influence of predefined FP rate on (a) detection delay
and (b) FN rate.

and the FN rate. The set of considered predefined FP rate is
μc ∈ {5e-3, 2e-3, 1e-3, 5e-4, 1e-4}.

Results with their mean and standard deviations are shown
in Fig. 2. As expected, with the increase of the FP rate, the
detection delay on all these applications slightly decreases.
The FN rate in D1 decreases as per the intuition, whereas the
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Fig. 3. Experiment results on D11 with three types of changes. (a) Temperatures with an abrupt perturbation affecting T3. (b) Temperatures with a linear
drift perturbation affecting T3. (c) Temperatures with a precision degradation affecting T3. (d) Estimated LSDD values with changes shown in (a) and the
derived thresholds. (e) Estimated LSDD values with changes shown in (b) and the derived thresholds. (f) Estimated LSDD values with changes shown in (c)
and the derived thresholds. T1–3 refer to temperatures gathered from three different sensors; Change: change location; Detection: location where we detect
changes; LSDD values: estimated LSDD values; Tw: warning threshold; Tc: change threshold; Ts: safe threshold.

FN rates in D2-6 show a slow rising trend. We comment that
FP rate μc = 0.1% appears to be appropriate to obtain small
detection delays as well as small FN rates.

C. Assessing Change Detection Performance

This section aims at comparing the performance among the
family of LSDD-CDTs and other competing methods. The
window size n is set to 100 and Nt = 400, but in D10
given the high dimensionality of inputs, we set n = 200 and
Nt = 1000. The first five methods are implemented in the
MATLAB, while CPMs operate using the R package cpm.
In this case, given the unfair time comparison on different
platforms, we do not record the execution time of CPMs. The
comparative analysis of detection performance is shown in
Table II where ND represents not detected.

H-ICI has the smallest FP and FN rates and the smallest CT
in most applications. The reason is that it segments observa-
tions into nonoverlapped windows, which saves computation.
However, the method fails to detect changes in D2-3 and D10
as expected, because H-ICI reduces multidimensional applica-
tions to several monodimensional cases at first and then detects
changes in each dimension. Moreover, the detection delay is
much higher than LSDD-CDT in all these applications.

CPMs do well in D1 with the shortest detection delay
but with high FP rates. The performance of accuracy and
promptness in D2-6 is almost the worst either on the FP or the
FN rates, and the detection comes with a significant latency.
Moreover, CPM-LP behaves badly in applications D7-10,
since it always detects an FP.

KNN-based test shows a similar performance with
LSDD-CDT in promptness and CT. However, it has much

higher FP rates, and always reports a false detection before
the real change happens.

The comparison between LSDD-Sli and LSDD-CDT shows
that the latter introduces both lower FP and FN rates. This hap-
pens mostly in applications D1-6, which indicates the effec-
tiveness of adopting the reservoir sampling. As we expected,
LSDD-Ens works better than LSDD-CDT in detection accu-
racy and promptness, with both lower FP and FN rates. How-
ever, it costs more time to compute the density differences,
since we use an ensemble with five reference windows.

Based on the analysis mentioned earlier, we achieve the
following conclusions. H-ICI shows an obvious advantage
in accuracy and CT, but with a higher delay, and it fails
to detect changes in truly multidimensional applications,
e.g., D2-3 and D10; CPMs do well in detection promptness
on data sets from normal distribution, whereas they almost
fail to detect changes in other cases with either too high FP
or FN rates; LSDD-Ens works well in all the applications
with a slightly higher computational cost compared with other
methods. Under some specific occasions where only one or
two indexes are required, such as high accuracy or low CT,
each of these methods would show a desired performance.
For instance, we recommend the ensemble procedure of
LSDD-CDT when execution time is not a strong constraint.
It is worth stressing that all LSDD-CDTs permit to set the
FP rates at a desired level, and do a good job in detection
promptness under acceptable FN rates in all these applications,
that is, the LSDD-CDT family of tests provides an excellent
integrated and consistent performance. In real applications,
methods with a controllable FP rate and small detection delay
are always preferred. All-in-all LSDD-Ens is performing very
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TABLE III

ASSESSING THE DETECTION PERFORMANCE WITH MULTIPLE CHANGES

Fig. 4. Four cases with multiple changes. (a) Case 1. (b) Case 2.
(c) Case 3. (d) Case 4.

nicely on most of the indexes and is particularly effective
on truly multidimensional applications where inspection of
a single dimension does not suffice (situation where the
H-ICT fails).

The next experiment refers to real application D11 where
different types of changes are added to the temperature sen-
sor T 3. The first 5740 samples, associated with 40 days,
constitute the training set, and an abrupt, a linear drift, and
a precision degradation concept drift are added from sample
9000, as shown in Fig. 3(a)–(c), respectively. The change
location index is shown with a blue dashed-dotted line, and the
detection index in red dashed-dotted line. All these changes
can be detected immediately once enough samples are col-
lected to show the significance of changes and this explains
the large detection delay introduced by the linear drift. The
LSDD values are shown in Fig. 3(d)–(f), as well as the three
thresholds.

The last experiment focuses on the performance in detect-
ing multiple changes in data streams. Here, we introduce a
new index “detection rate (DetR)” to record the rates (over
500 trials) that the current change is detected timely before
the next one occurs. In spite of using the default window size
n = 100, which behaves properly in our applications, we also
consider a larger size n = 200. The larger size can include
several changes. The four cases are shown in Fig. 4, and the
detection performance with different window sizes is recorded
in Table III. The comparative analysis holds the following.

1) Case 1 Versus Case 2: The first changes (1#) in
Case 1 are mostly undetected, since the few available

nonstationary samples are not enough to guarantee a
statistically significant difference (change). However,
when the testing window slides to contain more samples
associated with the changes (Case 1), the method detects
“an equivalent” change faster than in Case 2. That is,
the combination of changes 1# and 2# introduces an
“integral” effect.

2) Case 1 Versus Case 3: In the latter case, there are more
nonstationary samples, and the first changes (1#) are
detected more accurately.

3) Case 4: It models a gradual concept drift scenario
where the pdf changes after each sample. When q(x)
is different significantly from that of p(x), changes are
detected.

4) n = 100 Versus n = 200: In Cases 1 and 3, the
nonstationary samples are few, so that larger windows
(n = 200) may include more stationary samples, which
weaken the difference between q(x) and p(x). There-
fore, the tests become less sensitive to the first changes
(1#) in both cases with lower DetRs.

VI. CONCLUSION

In this paper, we propose a novel pdf-free CDT to monitor
data streams, which is based on the LSDD method. The
method can deal with multidimensional applications whose
pdfs are continuous without knowing any priors. By using
bootstrap we induce procedure, the distribution of derived
LSDD values D̂2 is constructed in stationary conditions so that
thresholds needed to claim a change are obtained with prede-
fined FP rates. A three-level threshold mechanism is proposed
to be sensitive to small changes (and hence keep under control
the FP rate); at the same time, it offers a way to accurately
identify change location. Experiments show that the proposed
LSDD-CDT works well both in terms of promptness and accu-
racy in all considered applications. We also provide a version
of LSDD-CDT by using an ensemble of several reference
windows; LSDD-Ens shows to be particularly effective in true
high dimensional applications at a high computational cost.
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